

UNIVERSITY OF
ILLINOIS LIBRARY

AT URBANA-CHAMPAIGN

Digitized by the Internet Archive

in 2013

http://archive.org/details/implementationof902baha

W'/^ Report No. UIUCDCS-R-77-902

I*

UILU-ENG 77 1755

NSF-0CA-MCS73-07980-000028

IMPLEMENTATION OF AN

INFORMATION-RETRIEVAL BASED CAI SYSTEM

by

Morteza Bahar

August 1977

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN URBANA, ILLINOIS

Report No. UIUCDCS-R-77-902

IMPLEMENTATION OF AN

INFORMATION-RETRIEVAL BASED CAI SYSTEM

by

Morteza Bahar

August 1977

Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, Illinois 61801

*
This work was supported in part by the National Science Foundation under
Grant No. US NSF MCS73-07980 and was submitted in partial fulfillment of
the requirements for the degree of Master of Science in Computer Science,
August 1977.

iii

ACKNOWLEDGMENT

The author would like to thank Professor David J. Kuck

for his patience, encouragement and advice i Dr. Luis Osin

for his guidance and many helpful discussions, and Perry

Emrath for his help and cooperation.

Thanks are due to my parents for their invaluable moral

support and encouragement.

The generous efforts of Cher Land and Tom Burket in

the production of this thesis are greatly appreciated.

iv

TABLE OF CONTENTS

Chapter Page

1. INTRODUCTION 1

2. ON THE DESIGN OF CAI SYSTEMS 2

2.1 Adapt ivity 3

2.2 Ease of Use & Applicability 7

2.3 Author-generated vs. Generative CAI 9

2 . b Lessons vs . Frames 13

2.5 Questions and Answers vs. Tutorial CAI... 18

2.6 Author/Instructor Facilities 20

2 .

7

Student Facilities 23

LIST OF REFERENCES 28

3. A "BETTER" CAI SYSTEM 31

3.1 Introduction to SMITH 31

3.1.1 The Author Specifications 32

3.1.1.1 Specifications of the

topics 32

3.1.1.2 Indexing of frames 32

3 • 1.1. 3 Sequencing specifications 33

3.1.1.** Instructional

specifications 3^

3.1.1.5 Specifications of

special frames 3^

3.1.2 Sequence 35

3.1.3 The Teaching System 36

3.1.4 System Implementation 37

3

.

2 Introduction to EUREKA 38

3.3 Introducing EURECAI, the Dynamic Dual!... 39

LIST OF REFERENCES 4l

4. IMPLEMENTATION DETAILS OF EURECAI MODULES 42

4

.

1 AUTHOR 42

4.1.1 Purpose 42

4.1.2 Input 42

4.1.3 Output 45

4.1.4 Program Description 45

4.1.5 Mode of Utilization 47

4.1.6 Error Messages 47

4.1.7 Notes 48

4 .

2

STUDNT 48

4.2.1 Purpose 48

4.2.2 Input 48

4.2.3 Output 48

4.2.4 Program Description 52

4.2.5 Mode of Utilization 52

4.2.6 Error Messages 52

4.2.7 Notes 52

4.3 GUIDE 54

4.3.1 Purpose 54

4.3.2 Input 54

4.3.3 Output 54

vi

4.3.4 Program Description 55

4.3.5 Mode of Utilization 57

4.3.6 Error Messages 57

4.4 EUREKA Modifications 58

5

.

A GUIDE FOR EURECAI USERS . 59

5.1 On Creating a Course 59

5.2 On Taking a Course 64

LIST OF REFERENCES 6?

6. FUTURE DEVELOPMENTS 68

6.1 The Student Program 68

6.2 The AUTHOR Program & Author Facilities... 68

6.3 The Instructional Program, GUIDE 69

6.4 The EURECAI System 70

LIST OF REFERENCES 72

1. INTRODUCTION

This thesis is an attempt to describe an implementation

of SMITH CAI system in connection with a text retrieval

system called EUREKA (thus, the name EURECAI for the entire

system)

.

Chapter two will provide some insight for the character-

istics of most CAI systems implemented to date and help to

justify the design of SMITH like CAI systems.

In chapter three some characteristics of EUREKA and SMITH

along with the adopted version of GUIDE (that module of SMITH

that interacts with the students), are briefly discussed.

Chapter four serves as the documentation for this

author's programming efforts, intending to simplify any

attempt made to modify, debug and maintain the CAI system.

Chapter five is provided to guide the future author of

the CAI system on how to create courses and what facilities

are at his disposal. The same chapter also contains a

guideline for the students, on what they can expect and how

they can best benefit from the CAI courses.

Finally, a list of ideas (or potential projects) on

required modification and further developments of the EURECAI

is presented.

2. ON THE DESIGN OF CAI SYSTEMS

Computer-based instructional facilities have existed

for over two decades now, and their use in education continues

to grow. With computers becoming more cost-effective and

available (ROCK75, p. 75, p. 193; STET70, p. kO)
, plus reports

of students' interest and evidence of more rapid progress

(ATKI73; HANS68; ROCK75, p. 332-335: SJOE76? LIND76) when

CAI complements or replaces traditionally administered

instruction, extensive growth in CAI systems design and

application can be expected.

What led to writing this paper was lack of enough lit-

erature on the advantages and drawbacks of various approaches,

factors involved in the design of a CAI system, and absence

of conclusive recommendations in that direction.

In this paper we shall consider some factors contributing

to the success of a system such as its adaptivity and ease

of use. The paper also includes discussions of different

teaching strategies, organization of the course contents, and

their possible implications for the system characteristics.

Some more recent CAI systems whose characteristics

are referenced very frequently in this paper arei SMITH

(0SIN76), BIP(BARR76), C0ALA(GRAY77) and (the not so recent)

PLATO.

In order to evaluate a CAI system we should concern

ourselves with basically three areas » 1) what it offers to

3

the student, 2) what it demands from the authors, and 3)

how reasonable an investment it is (i.e., applicability, cost,

portability, etc.). With these questions in mind, a set of

principles and comparison of approaches that the CAI system

designer should consider are listed below. These aret

adaptivity, ease of use and applicability, author-generated

vs. generative CAI, lessons vs. frames, questions and answers

vs. tutorial CAI, author/instructor facilities and student

facilities.

2.1 Adaptivity (individualization of instruction and more)

It should be rather obvious how individualized instruction

can make any mode of teaching more effective. One of the

major shortcomings in teaching courses with a large number of

students is lack of any personal attention to the students.

Not so bright students may feel left out, lost and isolated;

the bright ones may be bored; or both.

(STET70, p. 36) provides a good description of adaptivity

(Stetten's "humanization" , "relevance" and "individualization")

and what it means to the student and to the teacher.

A considerable effort has gone into adaptive CAI systems

during the recent years, examples of which are the Basic

Instructional Program (BIP) at Stanford University (BARR76)

MITRE's TICCET project (STET72) and the COALA project (GRAY77).

To provide adaptivity for the system, the designer uses

basically "static" and "dynamic" measures. Static measures

can be in the forms of» recognizing different levels of

competence for students in advance, and classifying and

sequencing the learning materials according to their level

of difficulty.

The SMITH system serves as a good example for a system

taking static measures (0SIN?6). The instructor of the course

may classify his students through a preliminary exam (or

other means) as level-O, level-1 . .., level-k. A lower level

implies more competence in the material by the student. Each

frame (unit of learning material being presented) is also

classified as level-O, level-1, ..., or level-k. Thus a

level- i student is presented with every frame of level zero

through i. A student's level may temporarily increase by his

own initiative.

Stanford's 1965-1966 arithmetic project is probably the

first to take static measures as discussed above. The student

level would, however, change dynamically as a function of his

performance (SUPP68).

SMITH also provides another level of static adaptivity

measure by assigning "tags" to the frames. Each student is

assigned a tag, reflecting his background, interest or school

curriculum. A frame with tag X is presented only to those

students having the same tag. This provides the ability to

present examples or exercises that are more meaningful,

motivating, or related to the student background.

1 All references made to SMITH in this chapter are to the
GUIDEd mode and not to the SOLO mode.

Dynamic measures are those taken depending upon the

student's performance, at the time of presentation (i.e.,

during the terminal session). Thus, a file reflecting the

student's history as he proceeds through the course must

exist within the system. The CAI programs should make intel-

ligent use of the student's history file to» a) present new

materials or exercises consistent with his state of knowledge;

b) remove his deficiencies demonstrated through an exercise

by directing him to a review of related and helpful material

(while giving him the option of skipping particular reviews),

or present him with a hint or explanation to remove his doubts,

and c) to control (restrict) his requests or progress when

necessary. The first example of a system taking dynamic

measures that we shall discuss is BIP.

BIP (BARR76), an interactive problem solving laboratory,

offers tutorial assistance to the students solving introductory

BASIC programming problems. The learning material is divided

into tasks (which may be divided into subtasks). Tasks are

programming problems of varying difficulty, identified by

their text, skills and model solution. Task selection is

based on both: l) the Curriculum Information Network which

describes the problems in terms of skills, and 2) a model of

student's knowledge (i.e., student's history file). The MUST

set holds a review list of skills still not mastered by the

student. This set aids the task selection procedure.

COmputer-Assisted Learning Applications (COALA) teaches

introductory electrical engineering network theory and was

developed at the Educational Technology Unit of the Victoria

Institute of Colleges (Australia)

.

COALA (GRAY77) can present a concept in four different

modes: as a rule, by example and counter-example, drill

and practice problem, or by application. Two factors considered

in the frame selection are: l) A pace rating determined by

the student's performance in the previous frames, 2) A most

suitable presentation mode determined by the student's previous

responses. Since the pace rating can also be a negative

integer, it makes stepping back a few blocks of frames possible.

This may be considered an instance of a system-initiated

review facility discussed earlier.

Upon an incorrect response to an exercise, SMITH provides

helpful material (covering topics predetermined by author) to

remove the student's specific deficiency in the related topics.

The nature of the review is a function of the number of his

earlier failures in the same exercise, and the particular

incorrect answer chosen. The system reply to the student's

incorrect response may also be a brief explanation or comment

as specified by the author. Note that the student at any

point in the review mode can end the review and return to the

corresponding exercise. This feature is a very desirable one

since often the student identifies his error very shortly

after he has made it and then a "forced" review is not an

appropriate approach.

It is hard to make specific comments on the PLATO project,

implemented at the University of Illinois, since every lesson

7

on PLATO could be written by a different author and based

on his teaching strategy and approach. To partially satisfy

the equal time advocates, however, we shall refer to PLATO,

but only to those lessons included in the introductory

computer science courses (NIVE76). The students taking these

courses are treated in about the same way. Some lessons may

offer an option to skip frames within the lesson, but that

is hardly enough and it is rather risky to skip the frames

of possibly unknown content. For example, a student may know

about one form of IF statement in FORTRAN, but not about all

its forms, thus by using the skip option he may miss some

useful frames.

It is unfortunate to see that most CAI systems have been

designed with a homogenous student population intellect,

competence, and performance in mind. Easy Assembler SYstem

(SJ0E76) and COMPUTER -TUTOR (LIND76) are recent examples of

the many such CAI systems.

The reader should note that generative CAI systems are

inherently more adaptive than the author-generated systems

(both are discussed further in this chapter). This follows

because a generative CAI system continuously maintains a

model of the student's knowledge and is designed to provide

information in precisely the area needed the most. Furthermore,

all decisions are made dynamically and depend on the student's

performance.

2.2 Ease of Use & Applicability

This criterion, this author believes, is an important

8

one, since it distinguishes between an experimental CAI

system and a practical one. It includes factors such as

availability, flexibility, cost, portability, ease of implemen-

tation and time-space requirements. Designs locked into

providing instruction on a specific material; implemented

in an assembly language; requiring a fixed hardware config-

uration or special equipments; ... are inflexible to use for

teaching other materials and skills, and costly (if possible)

to implement on different hardware facilities.

A major characteristic shared by most CAI systems is

that they are locked into teaching (or testing) a specific

subject (e.g., a programming language) or skill (e.g.,

programming, problem solving)

.

Computer-Aided Flow Diagram Teaching System (KOFF76),

BASIC Instructional Program (BARR76), Easy Assembler SYstem

(SJOE76) and the SOPHIE system (BR0W74) are recent examples

of such systems.

This application dependence of such systems is probably

their major disadvantage. If often implies that the author

of the course and the system designers should work as a team,

a team which may not be effective due to the diversity in

the members' background.

A very good counter example for such systems is SMITH.

This system does not offer a specific CAI course, but rather

application independent facilities which may be used to create

courses to teach any subject, with no programming requirements

imposed upon the author!

A desirable feature of CAI programs is their portability

(whether they are application independent or not). COALA

(implemented in BASIC) and SMITH (implemented in PL/l) were

designed with this criterion in mind. PLATO lessons implemented

in the TUTOR language and requiring special screen and keyboard

(as does TICCIT) serve as counter-examples.

Evaluation of CAI systems in terms of cost and time-space

requirements, with respect to their capabilities, character-

istics and effectiveness is still an open research subject.

2.3 Author -generated (address-oriented) vs. Generative

(information-oriented) CAI

The distinction between these two approaches to CAI

system designs is important, mainly because of its possible

implications on ease of creating a course and quality of

instruction. A good understanding of these two approaches

and characteristics of those CAI systems based on each, should

be very useful, if not essential to the CAI system designer(s).

This understanding aids the characterization of the initial

design approach.

Author -generated CAI is the most common style. The

author decides on the course contents and goals, organizes

the material into frames of text and/or exercises, specifies

the sequence of presentation and all the branching decisions.

The major advantage of this approach is that the frames

can be well-written and so organized to serve as a great

The terms in parenthesis were suggested in (OSIN76).

10

motivating factor to the student. This is an important

ingredient missing from most CAI systems; questions and

answers systems, in particular. (HICK7*0 lists the following

research recommendation* "research into techniques for

maintaining the increasing motivation which can be incorpor-

ated into the instructional strategy".

Another advantage of the author-generated CAI approach

for the creators of the courses rests with the smaller skill

and programming requirements. This will be more obvious when

the generative CAI approach is discussed. Note, however,

that in both strategies, the amount of time and skill required

from the author is still excessive.

The most important disadvantage of the author-generated

CAI approach is its inherent lack of adaptivity. The system

performance is always limited by the author's ability to

predict. There exists the implied assumption that the material

is well-understood and structured, and the student is well-

characterized — an inflexible and unreal assumption, in

general. Furthermore, to provide adaptivity by specifying

branches as a function of student's history and competence

can become a very complex task.

Introductory computer science lessons on PLATO are

written with this approach in mind. A lesson consists of a

pre-determined (pre-programmed is more accurate) sequence of

frames, with a set of predicted answers for exercises (BAHA76).

In COALA, the author may specify the order of presentation

of frames within a module, and the answers to exercises are

11

also pre-specified by him. COMPUTER -TUTOR presentation is

based on a simple sequence with no branching.

There are quite a few course-author languages (ZINN71)

that allow the author to create a course based on an author-

generated CAI strategy (e.g., IBM's COURSEWRITER, Course

Writing Facilities of Hewlett-Packard)

.

In the generative CAI method, the system produces a

frame of learning material or problem, analyzes the student's

response and takes the appropriate action following his

response or request. Therefore, the system has all the

necessary "knowledge" about the course being taught. The

author must provide algorithms to produce suitable questions

and answers, directories of equivalent terms and expressions,

plus all the facts, dependencies and interrelations. In

short, the author's knowledge of the subject and more should

be programmed into the system — certainly a non-trivial task!

Semantic networks are often used to represent the system

knowledge.

An advantage here, is that the course can provide

information in the area most needed by the student. This is

due to the fact that all decisions are made dynamically

based on the student's performance and state of knowledge,

rather than a pre-determined sequence of material. Note

that this also means maintaining and representing the student's

knowledge as he progresses through the course.

An important disadvantage of this approach is the enormous

amount of effort required by the author, and the complex nature

12

of representing information, student's knowledge, and the

response analysis. Furthermore, since facts, relations and

algorithms do change from one context or course to another,

systems based on this approach are locked into the subject

being taught, as discussed under "Ease of Use and Applicability"

Finally, even though the system may intelligently diagnose

the learner's difficulties, it is not always possible to find

the material required to remove student's deficiencies in the

data-base. In BIP, the system may determine the skills the

student has yet to master, but there may be no suitable task

developing or testing these skills, i.e., "a hole in the

curriculum" (BARR76).

The instructional program of BIP, maintains his "knowledge"

of the course, through access to the Curriculum Information

Network which consists of 100 programming problems and the

skills developed in solving each.

SOPHIE system (BR0W7*O has a great deal of knowledge

about what it teaches — troubleshooting a complicated elec-

tronic circuit. SCHOLAR (CARB70) is a classic example of

information-oriented approach. Computer-Aided Flow Diagram

Teaching System is considered "knowledgeable", and it can

question the student on his flowchart. There are no pre-stored

questions and problems.

As the reader might have guessed, a suitable combination

of both approaches could entail some advantages and soften

the disadvantages of each strategy. SMITH'S design is based

on this scheme. The author of the course provides information

13

about each frame of material , by identifying the topics

covered in (or related to) that frame. Answers to the

exercises are predicted by the author, and for the incorrect

answers a list of topics (not frames) to be reviewed are

specified by him. The author may require some ordering

among the frames, but at the time of the presentation the

sequence of frames is pre-determined.

The advantage of SMITH'S approach is the more reasonable

amount of work it requires from the author. In address-

oriented CAI, the author must specify all the branches, and

in generative CAI, he has to provide all the facts, but here,

he specifies a small subset of both. For specific figures on

the author time requirements to create a course see (OSIN76)

and chapter 5.

2.4 Lessons (modules, tasks) vs.. Frames

It has been quite common for CAI system designers to

recognize a logical breakdown (or hierarchy) of sets of

materials making up the CAI course. This logical observation

has often been mapped or programmed into the physical/actual

implementation. In other words, the content of the course

has been structured into some representation or model, one

which is, preferably, easily manipulatable and accurate. The

purpose of this section is to point out how the course

representation may affect system- student interactions. Let

us now cause no further confusion by resorting to some

examples.

1*

In BIP, the goal is to enable the student to master a

set of techniques. Each technique consists of a set of skills.

A task is a problem designed to test or develop a set of

skills. A skill may be mastered through more than one

technique and is used or developed by several tasks. Each

task has a set of subtasks and hints among other components.

This view is very closely programmed into the system

(e.g., it is essential to the task selection process). The

frames^ and tasks carry no identification from the student's

view, so he cannot request a particular task. A given task

is presented only when the system considers it appropriate

according to the student's needs and the pre-specified sequence

of techniques.

In SMITH, the course is organized according to the topics

to be taught. A given frame exists because of its relation

to one or more of the topics covered in the course. There-

fore, when organizing the course, the frames are sequenced

as a function of the order by which the topics are discussed.

No hierarchy or grouping of the frames exists in the (represen-

tation of the) curriculum, as it does in PLATO and COALA.

Between the frames and the topics, however, we can observe

a many-to-many relationship (a complex plex structure), if

we wish to.

In PLATO, the material covered in the course is structured

like a text book. Each lesson corresponds to a chapter and

3 Let's define a frame as a unit of course material text being
presented to the student, with a response expected from him
after the presentation. The problem description, subtask
text or hints are all examples of frames in BIP.

15

can be identified similarly. Each lesson is divided into

different sections which are subordinate to the lesson and

accessible by the student only through the lesson. The frames

within a section are presented sequentially (some lessons

may offer a skip option to allow "faster" progress) (BAHA76).

COALA modules are similar to PLATO lessons, and cells

to sections, but the frames within a cell are not presented

in a similar fashion, as discussed under "adaptivity". Frames

are created through the FRame Entering System for COALA

(FRESCO), which generates one program per frame.

Let's now discuss some of the implications and character-

istics of various organizations of curriculum upon the mode

of system- student interaction.

In BIP, if the student has once "mastered" a skill , and

now wishes to review that skill, he has no direct control

over choosing an appropriate task .

In SMITH, if the concept the student wishes to review

has been explicitly identified by the author as a topic, or

discussed under several known topics, he has direct access

to the corresponding frames. Otherwise, he is forced to

"navigate" through a subset of the frames he has already

seen (i.e., he has to request to review every topic, which

allows him to see only those frames that are most relevant

to a given topic).

Under PLATO, and to some degree COALA, the student may

have direct access to a section (not the particular frames),

but only if he can identify the lesson and the section

16

precisely. If the concept of interest is scattered throughout

various lessons, however, he has no choice but to navigate

through all the suspected lessons!

Sometimes, a student may wish to review a given example

or explanation or re-do an exercise. BIP provides no such

student control. In SMITH, as pointed out earlier, only a

subset of frames can be accessed through review requests.

The student may, however, step back through the sequence

of frames he has already seen. No solved exercise may be

re-attempted. A PLATO student may re-view any frame he wishes,

if he knows where to find it. Re-view of a given frame seems

unlikely for a COALA student, due to the random and history-

dependent frame selection within a cell.

It may be desirable if the student could continue his

instruction from exactly where he left off during his previous

session. It seems CAI systems with curricula organized as a

set of lessons or tasks could not provide such a feature.

A PLATO student after solving a few exercises and "reading"

a few frames within a lesson, will be re-presented with them,

if he exits the lesson and returns later (even if within the

same session). BIP student's return point is not within a

task but after the last finished task. Only in SMITH, where

there is no hierarchy imposed upon the frames, the student

may resume with the current frame at his time of departure.

A final observation should be made, about the actual

implementation of a lesson-oriented system (e.g., PLATO) vs.

a frame-oriented approach (e.g., SMITH). Once a PLATO student

17

requests a given lesson, the program and the lesson text are

entirely loaded into the memory (extended core storage).

More than one student may share the same lesson, but if they

choose different lessons, a great amount of storage should

be made available to them. In the frame-oriented approach

since each frame can independently exist, it can be brought

into the memory and presented to the student only when needed.

In SMITH, the text is totally separate from the programs, and

as a result the student has access to enormous amounts of

material at no extra main memory requirement (this approach

is considered information-retrieval oriented). A SMITH course

can offer the student a variety of introductory, complementary

and essential material plus exercises, on a given topic, as

opposed to PLATO lessons, where the amount of text is of

direct (memory) concern.

It is not obvious, in general, which approach to

curriculum organization is a superior one, even though in

the above discussion, the frame-oriented approach does seem

more flexible than the lesson-oriented structures. But,

let's note that, whatever type of curriculum representation

a designer chooses, it should be with a given teaching

strategy and the course-content-related objective in mind,

and not purely as means of facilitating the implementation

(an advantage of PLATO course organization is that writing

the lessons may be divided among several authors). It should

also allow a reasonable manipulation of the material by the

18

student (in forms of reviews, repeats, etc.) as well as the

flexibility to grow in options and in the amount of text.

This area does still require more research. In 197^,

Hickey listed: "research on the organization of content

for easy retrieval by students who are utilizing a learning

strategy" (HICK74) as an important research topic.

2.5 Questions and Answers vs . Tutorial CAI

Since, in the field of CAI there exists no universal

agreement on the meaning of most commonly used terras, let

us first define those we have already seen in the section

title.

Questions and Answers CAI systems are those offering

student-controlled instruction. The student may ask to be

presented with some information, explanation and examples

t

or to be tested on a given topic or skill. Some of these

systems carry on an English-like conversation with the student

and most have little or no control and teaching strategy

(e.g., GEO-SCHOLAR (CARB73, COLL73)).

Drill and practice, problem solving and dialogue systems

are all treated as subsets of questions and answers systems

in this discussion. The drill and practice system reinforces

learning of a concept the student has already been exposed

to, by means of providing examples and/or exercises on that

concept. Some PLATO lessons (e.g., chemistry lessons (BITZ72)),

the CLOSE program ((ROCK75, appendix A), and EASY (SJOE76)

are examples of drill and practice systems.

19

The reader is referred to the description of problem-

solving (e.g., BIP) and dialogue systems (e.g., SOCRATIC

(FEUR65)) found in (ROCK75).

Tutorial systems are by far the most widely implemented

CAI systems. Their primary purpose is to teach the students

about new facts and concepts. This is done through! 1) Intro-

duction of a new concept (or motivating the learner) 5 2)

Description of the concept, presentation of facts? 3) Clari-

fication (by examples or supplementary material); *0 Exercises

and problems.

Some PLATO lessons (e.g., introductory computer science

courses (NIVE?6)), SMITH (OSIN76), COMPUTER-TUTOR (LIND76)

are examples of tutorial systems.

The distinction made here, between tutorial and questions

and answers CAI systems should be rather obvious, since they

have different objectives. The primary focus of the former

is to introduce new facts or concepts, and provide some

examples and exercises, but the latter is designed to re-enforce

what the student has previously studied, by offering him

examples and mostly exercises.

Most dialogue systems (e.g., GEO-SCHOLAR) are able not

only to generate (or present) questions but answer the student's

question, as well. But due to some of the following short-

comings they are considered as questions and answers CAI rather

than tutorial* 1) They lack control and (teaching) strategy.

2) To teach some subject domain, a stand-alone, self-comple-

menting CAI system of this type is insufficient (GRIG?4).

20

3) Organization of the course content in a student-controlled

environment, the student's strategy in learning (in that

environment) , and his estimate of his own competence are all

topics that (may still) require more research (HICK7*0 . 4)

As discussed earlier, question and answer dialogues may not be

motivating, and these systems are often application dependent.

In short, questions and answers CAI systems are appro-

priate to use for only a part of the instruction process,

as opposed to tutorial CAI which can be stand-alone and self-

complementing. The significant purpose that drill and practice,

and problem-solving CAI systems can serve, however, should not

be underestimated. Availability of these systems has been

very helpful in teaching some topics and skills such as

accounting, programming, problem-solving and the like.

The major weakness of tutorial CAI, simple tutorial in

particular, is that it is often author-generated, forcing the

inherent limitations as discussed under previous sections.

Once again, a more reasonable design would be one based

on a mixed approach, one which is tutorial in character but

provides examples and exercises as evenly or effectively as it

presents facts and concepts. This would also imply transfering

more control to the student (from the author) so that he may

practice and exercise the concepts according to his needs

and interests.

2.6 Author/Instructor Facilities

Since there normally has not been much concern for a

21

course author's workload in CAI system design, few non-CAI

researchers have been attracted to CAI. The major burden for

authors is that often they must take part in the design of

the CAI system rather than only dealing with curriculum

development for that system. As a result, an enormous amount

of time and skill have been required of authors in the past

(The reader is referred to (OSIN76) and the following references

listed in that paper: FROM73, R0SE72, D0NI71, HAEF71).

As discussed earlier, due to the application dependency

of most CAI systems, the participation of the teachers in their

design and implementation should be no surprise!

The designers should think of the potential authors by

answering these questions*

1. Who can be an author for the system? Competence in what

skills are required of an author?

2. How easily can he create a course? Is it facilitated by

other software support?

3. Are there facilities to change or update the course contents

(without having to recreate the course)?

4. Are there facilities to monitor or record a student's

performance, attendance, difficulties, communications, etc.?

COALA aids the author in creating frames. He must,

however:

*'l) draft a screen layout, and organize any branching

which is dependent upon the student responses within the

learning materials;

2) Code the screen layout (and branching) into appropriate

22

frame entering instructions; and
. ... U

3) enter the instruction into the system."

(GRAY77, P. 75)

On-line facilities also exist for preparation of diagrams

used within a frame.

One of the functions of the COALA supervisory system

is to monitor and record student access as well as record/

report his performance in the course.

Among the TICCET aims was providing a variety of features

to facilitate author's maintenance and improvement of courses.

They include features to: identify weaknesses in course

contents, record student progress, and detect student problems

(and alarm the instructors).

PLATO authors must learn TUTOR to create a lesson, but

the instructional facilities provided on the system are

excellent. Instructors may collect various statistics on

students such as their performance, attendance and progress

history. The instructors can easily communicate (in real time)

with one or more of the students. This is especially useful

when the instructor and student(s) work at different sites.

Instructors, authors and the students may also leave messages

(e.g., remarks on a lesson) for each other (NIVE76, BAHA76) .

To change a lesson on PLATO means one must modify the

program of that lesson. Due to complexities of graphic

techniques involved, most lessons are under continuous revision,

as the programmers (i.e., authors) gain more experience.

$:

Author's emphasis

23

Creating a course of lessons is thus considered very time

consuming and/or labor intensive.

SMITH provides a variety of software supports to aid

the preparation of the course. These programs can detect

weaknesses ("holes") in the curriculum, inconsistencies in

the specification, or the author-generated sequence. The

support is available to organize the course using the author's

initial specification while requiring no further intervention.

The aim in the design of SMITH was to require no programming

or special skills other than the author's ability to teach

the subject (i.e., decide on the topics to be covered by the

course, organize frames of material, exercises, and answers,

related to those topics)

.

2.7 Student Facilities

Since in any CAI system the main concern is the satisfac-

tion and learning of the student, almost everything we have

discussed is basically related to what the system can offer

to the student. In this section, however, let us consider

some other desirable features which can be included in the

system design or the final implementation.

The first question is how well the student and the system

communicate or interact. Systems which allow a natural-

language-like conversation are probably the most desirable

and natural for the student, but the implementation of these

is still experimental, and can be too complex to be practical.

24

The communication language should be simple to learn

and resemble natural and human-like conversation as much as

possible.

COMPUTER-TUTOR serves as a good example. Its student

commands aret QUIZ, LESSON, PROGRAM, REVIEW, INFORMATION,

OUTLINE, QUESTION, BYE.

BIP makes many instructions available to the student.

In the author's opinion, however, students with no programming

experience (who BIP aims at), will first have to be taught

(by means of explanations and examples) what some of these

commands mean and when they should be used, before they are

expected at the terminal. Some of the BIP student commands

are: HARDCOPY, TASK, SUBTASK, SCRATCH, FILES, SAVE, GET, MERGE,

KILL, etc.

The most complex and important portion of interaction

with the student is response analysis (answers to exercises,

in particular). A reasonable system must check for spelling

errors, for an undetected spelling error can totally confuse

the student and lead to a mistrust of the system. A list of

synonymous words or expressions should be maintained (in a

thesaurus). In mathematical problems, equivalent expressions

and values in different units or within a particular tolerance

should be acceptable. Partially correct answers should be so

indicated in error messages (e.g., if the answer is in two

words, and the student has one word right). Error messages

should be clear, helpful and understandable.

25

In this direction, COALA provides one of the better

facilities. Student response evaluation programs* take into

account alternative responses, accept mathematically equivalent

results, correct misspelling (and indicate it), maintain a

file of synonyms, etc. (GRAY77).

The second point of interest is the student's interactive

role. What is expected from him? It is probably undesirable

to require the user to continuously make decisions on what to

see (now), to skip, or to see later. The student does not

always know what he does not know, or what he should see. In

short, the system should have an author-designed pattern to

follow, yet allow student -initiated changes in the presentation.

The student should be able to get around restrictions imposed

upon him or the curriculum, if he finds it necessary. For

example, if he chooses to or is forced into a review, he should

not be required to re-do the exercises he has already success-

fully completed; or if he has failed an exercise several times

he should be allowed to proceed or request the answer.

Some exercises on PLATO computer science lessons do not

allow the student to proceed if his answer is incorrect and

the system's reaction in this case is a simple "no"! This

intolerable situation often cannot be resolved without the

instructor's assistance (BAHA?6).

The BIP supervisory system requires the student's self-

evaluation following each task, weighting the results in the

selection of tasks.

26

In SMITH, a wrong response to an exercise triggers an

explanation or re-presentation of the frames (exercises are

excepted) most related to the student's deficiency. The

student may, however, end this review and return to the exercise

at any point during the review.

The final point to be discussed is the "extras" from

the student's point of view. Features like graphic capabilities

can result in very useful illustrations, introduce a variety

in mode of presentation, attract student's attention, etc.

PLATO provides probably one of the best graphic facilities

for general purpose CAI today. Graphic features are also

available on« 3IP, COALA, TICCET, and others.

Instead of attempting to classify such "extras", let us

settle for a few instances of efforts in this direction. The

COALA system enables the student to search through a data-base

of material relevant to the course. He may also request

definition of a given word in terms of explanatory text or

illustration (graph). COMPUTER-TUTOR can easily be used to

give a placement test.

One of the recent implementations of SMITH (called

EURECAI) provides full access to the data-base by means of

a reasonable query language. This is discussed in the following

chapters.

The BIP system provides probably one of the best sets of

debugging and problem solving aids among the systems of its

kind. This includes features: to trace the execution of the

program; to observe the output of a sample solution? to pinpoint

27

the student's error (i.e., an interpreter), to provide a

sample solution, hints and help among others.

28

LIST OF REFERENCES

ATKI73 Atkinson, R.C., J.D. Fletcher, E.J. Lindsay,
J.D. Campbell, & A. Barr, "Computer-Assisted
Instruction in Initial Readings* Individualized
Instruction Based on Optimization Procedures,"
Educational Technology . 13, 17, 1973.

BAHA76 Bahar, Mory, Personal observation and experiences
The author was a teaching assistnat for C.S.
introductory courses during spring and fall of
1976. Duties also required being the instructor
of several PLATO sections, 1976.

BARR76 Barr, A., M. Beard, & R.C. Atkinson, "The Computer
as a Tutorial Laboratory: The Standard BIP
Project," International Journal of Man-Machine
Studies , 8, 576-596, 1976T"

BITZ72 Bitzer, D.L., B.A. Sherwood, P. Tenczar, "Computer-
Based Science Education," presented at the
conference on "Utilization of Educational Technology
in the Improvement of Science Education," UNESCO,
Paris, September 1972.

BROW7 2* Brown, J.S., R.R. Burgon, &A. Bell, "An Intelligent
CAI System that Reasons and Understands," (BBN
Report 2790), Cambridge, Massachusetts: Bolt,
Beranek and Newman, 197^.

CARB70 Carbonell, J.R., "AI in CAI : An Artificial-
Intelligence Approach to Computer-Assisted
Instruction," IEEE Transactions on Man-Machine
Systems . December 1970.

CARB73 Carbonell, J.R. & A.M. Collins, "Natural Semantics
in Artificial Intelligence," Proceedings of the
Third International Joint Conference on Artificial
Intelligence, Stanford, California, August 1973

•

COLL73 Collins, A.M., JJ . Passafiume, L. Gould, & J.R.
Carbonell, "Improving Interactive Capabilities
in Computer-Assisted Instruction," (BBN Report
2631), Cambridge, Massachusetts: Bolt, Beranek
and Newman, 1973*

D0NI71 Donis, J., "Computers in Education: Present
Situation and Development Trends," in A. Daniels
(Ed.), Educational Yearbook . 1971-1972 . London*
The British Computer Society, 1971

•

29

FEUR65

FROM 7

3

GRAY77

GRIG7^

HAEF71

HANS68

ROSE72

SJOE76

STET70

SUPP68

Feurzeig, W., "Towards More Versatile Teaching
Machines," Computers and Automation . March 1965.

Fromer, R., "Author Support Requirements of a
Computer-Based Instructional System," Educational
Technology , 13, 18, 1973-

Gray, D.C., J. P. Hulskamp, J.H.S. Kumm, S.
Lichtenstein, & N.E. Nimraervoll, "COALA - A
Minicomputer CAI System," IEEE Transactions on
Education . E-20, February 1977.

Grignetti, M.C., L. Gould, C.L. Hausmann, A.G.
Bell, G. Harris, & J. Passafiume, "Mixed-Initiation
Tutorial Systems to Aid Users of the On-Line System,"
(NLS) (ESD-TR-75-58), Bedford, Massachusetts:
Deputy for Command and Management Systems,
Electronic Systems Divisions, in A. Barr, M. Beard,
& R.C. Atkinson, "Computer-Based Tutorial Laboratory:
The Standard BIP Project," International Journal
of Man-Machine Studies . 8, 576-596, 1976.

Haefner, K., "Computer-Assisted Instruction at
University Level in Science and Medicine,"
Naturwissenschaftliche Rundschau . 24, 12, 1971.

Hansen, D.N., W. Dick, & H.T. Lippert, "Research
and Implementation of a Collegiate Instruction of
Physics Via Computer-Assisted Instruction,"
Technical Report No. 3, Florida State University,
Tallahassee, Florida, November 1968 in John Fralich
Rockart and M.S.S Morton, Computers and the Learning
Process in Higher Education . New York: McGraw-Hill
Book Company, 1975.

Rosenbaum, P.,
New Direction
12, 36, 1972.

"Toward the Automated Workbook: A
for CAI," Educational Technology .

Sjoerdsma, T. , "An Interaction Pseudo-Assembler for

Introductory Computer Science," ACM Joint Bulletin

SIGCUE-SIGCSE , February 1976.

Stetten, K.J., "The Technology of Small Local
Facilities for Instructional Use," Mitre Report
No. M69-39, Mitre Corporation, Bedford, Massachusetts,
June 1972.

Suppes, P., M. Jerman, & D. Brian, "Computer-
Assisted Instruction: Stanford's 1965-1966
Arithmatic Program," New York: Academic Press,
1968.

30

ZINN71 Zinn, K.L., "Requirements for Programming in
Computer-Based Instruction Systems," in A. Daniels
(Ed.), Educational Yearbook . 1971-1972 , London*
The British Computer Society, 1971.

31

3. A "BETTER" CAI SYSTEM

In this chapter, the reader will find a brief description

of EUREKA (an information retrieval system), SMITH (a computer-

assisted instruction system) and the system obtained by linking

an adopted version of SMITH to EUREKA (called EURECAI) . Their

inclusion in this thesis is primarily for the sake of complete-

ness. The interested reader is referred to the literature

provided by those originally involved in the design, as well

as the implementation of these systems.

(0SIN7^) provides the detailed description of the background,

approach, design, implementation and results for SMITH. (OSIN76)

is a recent report (and a better one to read) on the SMITH

system and includes discussion on the developments of a newer

version called SMITH II, implemented at the University of

Michigan.

(STEL?4) provides some background to the EUREKA system.

The description of the system and also a user manual for EUREKA

are provided in (MORG76). Some evaluation and development

related to EUREKA are documented in the following reports*

(RINE76), (MORT76). Since most EUREKA modules are under

continuous revision, none of the above reports are considered

up to date.

3.1 Introduction to. SMITH

The SMITH system is an information retrieval oriented

computer-assisted instruction system. It was designed and

32

developed by Luis Osin (OSIN7^ t OSIN?6) at the Israel Institute

of Technology. Most of the material in this section is taken

from (OSIN76)

.

As pointed out in chapter two of this thesis, SMITH is

a tutorial CAI system, with some adapt ivity features, flexible

in usage, frame -oriented, and requiring ao_ programming by the

authors of CAI courses. Its design is based on an intermediate

strategy between the two extremes of author-generated and

generative CAI. The author specifies some information on the

frames and the contents of the course, and some on the branch-

ing and remedial loops. With intelligent use of this minimal

information SMITH'S teaching strategy can provide a suitable

and adaptive presentation to the students.

Let's now briefly discuss the nature of the author's

specification involved in the design of a SMITH supported

course.

3.1.1 The Author Specifications

3.1.1.1 Specification of the topics. A list of topics

to be covered in the course or required as prerequisite to

it are provided. A topic is identified by a topic number.

3.1.1.2 Indexing of frames. Each frame is indexed by

a set of couples. Each couple consists of a topic number and

a qualifier describing the relation between the frame and the

topic. The list of possible qualifiers is given in Table 1.

33

Table 1

Qualifier Function

I (Introduction) The frame introduces

the topic.

N (Necessary) The frame presents material

essential to learning that topic.

C (Complement) The frame serves to clarify

(by example or explanation) the

topic.

E (Exercise)

P (Problem)

R (Required) Knowledge of the topic is

required for learning other topics

covered in the frame.

3*1 *1* 3 Sequencing specifications

(a) Frame precedence relations (FP)

Here the author may specify some restrictions on the

final sequence of the frame presentation. The specifications

in this part are in the form of pairs, i.e., the first frame

is to precede the second.

(b) Chains

All the frames specified as a chain are entered into the

3^

sequence with no insertions allowed within the chain.

3.1.1.^ Instructional specifications

The presentation is not only based on the sequence of

the frames, but also adaptive to the student's level of

competence and background.

(a) Levels

The author must assign a level to every student and

every frame in the course. A lower level, for the student,

implies more competence in the material, and for a frame

implies a more difficult and essential frame for covering

the course. A level-i student is presented with all frames

of level-i or lower.

(b) Tags

Each student is assigned a tag, reflecting his background,

interest or simply school curriculum. Similarly the frames

of interest are assigned a tag. This allows two students with

different backgrounds to be presented with examples or exercises

relevant to their own background and interest. Therefore, a

tagged frame is presented only to those students having the

same tag. Un-tagged frames are presented to all.

3.1.1.5 Specification of special frames

There are two types of special frames 1

(a) Extensions

These frames are extensions to the main frame, with the

purpose: 1) to give more explanation of the contents of the

main frame, or 2) to mention topics which may be of interest

35

to a minority of students, or 3) to give a hint towards the

solution of an exercise or problem,

(b) Exercises

For each exercise the author specifies a list of predicted

answers. For each (or a group of) incorrect predicted answers

he provides a remedial group. An incorrect response by the

student is an indication of his lack of understanding of

particular topics. These topics should be placed in the

remedial group.

This concludes the author's effort towards creating a

new course.

3.1.2 Sequence

The next step is to order the frames satisfying the author's

sequencing specifications as well as the following criteria!

(a) Topics already based on student's previous knowledge

should be presented first.

(b) New topics should be presented in a smooth and

continuous manner (in successive frames)

o

(c) Presentation of a topic should be in the form of a

set of introductory (I) frames, followed by necessary (N)

frames, supplemented by clarification (C) and exercises (E)

or problems (P)

.

This step is performed automatically, using the sequencing

program called SEQUENCE.

36

3.1.3 The Teaching System

Each SMITH student is assigned a level through a test or

interview, and has an activity file containing his attributes

and history of progress in the course.

The student may interact with SMITH in two different

modest guided (author-controlled) and exploratory (student

-

controlled) . GUIDE and SOLO are the programs corresponding

to these two modes.

There are two types of frames presented to the student —

expository and exercise,

(a) Expository frames

Any frame which is not an exercise is expository. The

student's response to such frames can be any of those listed

in Table 2.

Table 2

Character Meaning System Action

U Understood

Clarify

B Back

Present the next frame in

the current sequence

«

Presents new frames clarify-

ing the transition between

the previous frame and the

current one.

Presents the previous frame.

s Suspend

? Doubts about

certain topics

R Resume

37

Terminates the session.

Allows the student to review

the topics of interest.

Returns to the original

sequence — the sequence he

was following when he responded

with MB", MC'\ or M?*\

(b) Exercises

The student's response can be either an answer to the

exercise or any of the commands listed in Table 2, with the

exception of "U". If the student fails the exercise, he will

be presented with a review of the concepts (i.e., topics) he

has failed to learn. If this is the first time the student

has failed the exercise, the student is presented with only

those frames which are essential to learning the corresponding

topics and are to precede that exercise (the current frame).

Recall that this precedence relationship is specified by the

author (see section 3«1«1»3)» Subsequent failures will

result in more intensive reviews (i.e., more frames)

o

3ol.^ System Implementation

The SMITH characteristics that justify the linkage

between SMITH and EUREKA are outlined in this section.

There are basically four modules required by the

instructional process:

38

(a) The teaching program (GUIDE or SOLO).

(b) The course description file.

(c) The frames of material (i.e., the course content).

(d) The student activity or history file.

In the teaching process, GUIDE (for example), uses the

information in files (b) and (d) to select a frame from file

(c). Each frame in file (c) is uniquely identified by a key

(the frame library number). The file (c) is accessed through

an indexed sequential access method. During the instructional

process, for every student -terminal, the teaching program (a)

and the files (b) and (d) are loaded into the memory. This

is obviously an impractical approach, unnecessary, costly (in

terms of memory) and may degrade the system performance (i.e.,

poor response time, excessive memory management overhead,

etc.). As (OSIN76) suggests too, only one copy of (a) and (b)

should be loaded for all students.

3.2 Introduction £o_ EUREK&

EUREKA is a mini-computer based experimental information

retrieval system, retrieving text under a multiprocess,

multiuser monitor. A query language is provided which allows

the terminal user to perform rapid searches through the data-

base. The data-base consists of a set of documents, each

indexed by every word occurrence in the document. It is this

inverted file organization that allows retrieval of a set of

documents satisfying a query within a reasonable amount of time.

39

Facilities are also provided to view (or print) sets of

documents (satisfying a user query), perform full text search

of the documents, and maintain the result of previous searches

performed (i.e., a user file).

The points of interest to us concerning EUREKA and its

implementation aret 1) The multiuser executive system

(described in MILN75) . 2) The text retrieval mechanisms and

3) The ability to store and maintain a moderate amount of

text in the data-base.

3.3 Introducing EURECAI . the Dynamic Dual !

During the fall of 1975 t we decided to implement GUIDE, the

interactive instructional program of SMITH (author-controlled

CAI program) linked with the EUREKA system.

The advantages were obvious. To the author it meant t

1) A previously created library of frames (i.e., the text in

EUREKA data-base) , 2) ease of manipulation of the text frames

(i.e., each frame is easily identified by document and paragraph

number) and 3) search facilities to provide access to all the

frames of interest in the data-base (i.e., shorter course

preparation time).

To the student, it means access to EUREKA data-base which

should normally contain the texts related to the course —
recall that in SMITH, frames being utilized in the course are

only a subset of a library of frames, previously available

only to the author.

At last, and certainly not the least, are the advantages

from the system and implementation point of view« 1) Only

one copy of GUIDE is kept in the memory, regardless of the

number of students, 2) the ability to keep only one copy of

the course description file in core (not actually implemented

at the present time) and 3) retrieval of frames is left to

EUREKA o This is actually a factor that degrades system

performance. EUREKA performs a sequential search through a

document to access a given paragraph, thus requiring a con-

siderable CPU and I/O time. In SMITH, a frame is accessed

through an indexed sequential method which may require no

more than two disk accesses (assuming the index tables are

np1? kept in core).

41

LIST OF REFERENCES

MILN75 Milner, J.M., "A Multiprocess, Multiuser Executive
for an Experimental Information Retrieval System,"
Report No. UIUCDCS-R-75-736, M.S. Thesis,
Department of Computer Science, University of
Illinois, Urbana, Illinois, August 1975.

M0RG76 Morgan, J.K., "Description of an Experimental
On-Line, Minicomputer-Based Information Retrieval
System," Report No. UIUCDCS-R-76-779, M.S. Thesis,
Department of Computer Science, University of
Illinois, Urbana, Illinois, February 1976.

MORT76 Morgan, T.J., "A Thesaurus Feature for the EUREKA
Information Retrieval System, M.S. Thesis,
Department of Computer Science, University of
Illinois, Urbana, Illinois, August 1976.

0SIN74 Osin, Luis, "A System to Produce CAI Courses from
Logically Structured Educational Material,"
Technical Report No. 29 (November 1973) » Doctoral
Dissertation, Department of Computer Science,
Israel Institute of Technology (Technion), Haifa,
June 197^.

OSIN76 Osin, Luis, "SMITH: How to Produce CAI Courses
Without Programming," International Journal of
Man-Machine Studies . 8, 107-2^1, 1976.

RINE76 Rinewalt, J.R., "Evaluation of Selected Features
of the EUREKA Full-Text Information Retrieval
System," Report No. UIUCDCS-R-76-823, Ph.D.
Thesis, Department of Computer Science, University
of Illinois, Urbana, Illinois, September 1976.

STEL74 Stellhorn, W.H. , "An Experimental Information
Retrieval System," Report No. UIUCDCS-R-7^-657,
Department of Computer Science, University of
Illinois, Urbana, Illinois, 197^

42

4. IMPLEMENTATION DETAILS OF EURECAI MODULES

In this chapter we shall look into the implementation

of the three CAI programs that have been developed. AUTHOR

is a stand-alone program that creates the course description

files (i.e., CRS.CAI). STUDNT is the program that creates

student activity files (e.g., MORY.ACT). GUIDE, is the

instructional program, which is a simplified version of

SMITH'S GUIDE. Finally, the essential modification of EUREKA

modules are described.

4.1 AUTHOR

4.1.1 Purpose

The purpose of AUTHOR is to allow the author or the

system programmers to create course description files.

4.1.2 Input

The input to AUTHOR is DBF. CAI, which is a contiguous

file in ASCII form. At the present time there is a PL/l

program (called DBFOUT.CAI) which accepts input (author

specifications) and prints two copies of DBF. One copy is

clearly labeled and designed for the author or system program-

mer to verify the input. The second copy (which immediately

follows the first copy on the printout) is DBF. CAI. Thus

this part of output, at the present time, is extracted of

*3

the output (using the EDIT-ll) and labeled DBF.CAI. The

contents of this file are the following variables and arrays

(in the order of appearance):

NF: number of frames in the course.

NT: number of topics.

NUMEX: number of exercises (recall that exercises are
considered as special frames)

.

TNRG: total number of (distinct) remedial groups.
Recall that for every wrong answer of an exercise,
the author would provide a list of topics to be
reviewed. Each such list is a remedial groups
(of topics). Different exercises may have
identical remedial groups.

TNANS: total number of answers (of all exercises).

MAXL: maximum level for frames and students.

FT: frame vs. topic array of characters. It has NF
x NT entries. Each entry is a character from the
list: E, N, C, I, R or blank.

FRALINi frame library numbers. This is a two-dimensional
array (FRALIN (1:2, 1:NF)). For each frame,
two numbers, corresponding to the document
number and a paragraph number, are provided.
This pair uniquely identifies a frame within
a given data-base on EUREKA

.

TOPIC: list (array) of topic names. This is a vector,
with TOPLEN (topic length) characters per entry.
TOPLEN is provided as an input to the PL/l
program (DBFOUT.CAI) and should be as long as
the longest topic name.

GRADKY: This array has NF entries. Each non-zero entry
corresponds to an exercise-frame and the entry
is the exercise number.

SFL: sequence frame levels. There are (NF+l) entries
in that copy of SFL that appears in DBFOUT.CAI,
and used by GUIDE. Each entry corresponds to the
level of the frame in the sequence. For example,
SFL (5) = 2, means the fifth frame in the sequence
is a level-2 frame. The last entry, SFL(NF+l), is
always zero.

M
NANS: number of answers. NANS array has NUMEX entries.

NANS(5)=2 means the fifth exercise has two
answers (correct and incorrect). Only one correct
answer is allowed per exercise.

FSTANS: first answer. FSTANS has NUMEX entries. Each
entry points to the remedial group (in CORTOP)
corresponding to the first answer of a given
exercise. For example, FSTANS(5)=l6, means
that the remedial group number corresponding
to the answer #1 of exercise number five is
found at the sixteenth entry of CORTOP.

CORTOP: This array has TNANS entries, i.e., one remedial
group per answer. The entries corresponding to
correct answers are zero. All other entries
contain a remedial group number. For example,
FSTANS(5)=l6, CORTOP (1 6)=^ means that the
fourth remedial group corresponds to the first
answer of the fifth exercise. Note that CORTOP
(17) will correspond to the second answer of
the fifth exercise!

TOPFAIL: topics failed. This two dimensional array
provides a list of topics per remedial group,
i.e., TOPFAL (1:TNRG, 1 : NT) . All entries
are integers zero or one. For example, if
T0PFAL(5,2:NT)=0 and TOPFAL(5, 1)=1, then we
have only one topic (topic number one) in the
fifth remedial group.

FP : frame precedence array. This is a two dimensional
array of the form FP(1»NF, 1:NF). Entries are zero
or one. FP(50,100)=1 means frame number fifty must
precede frame number 100 in the sequence of presen-
tation.

ACTKEYt activity key array. This vector has entries
with zero or one as value. Entries of one
correspond to the exercise frames. For example,
ACTKEY(7)=0, ACTKEY(8)=1 means seventh frame
is expository and the eighth an exercise frame.
This array is copied to every student's activity
file (in STUDNT) and is updated as the student
is presented with various frames.

All numeric entries in DBF.CAI are in 1(5) format, with

the exception of: TOPFAL, SFL, FP and ACTKEY which are in

1(1) format.

45

*!>.1.3 Output

The output file generated by AUTHOR, is CRS.CAI. This

file is contiguous and should be allocated before running

AUTHOR. This is a binary file (not ASCII) for easy manipu-

lation by GUIDE.

CRS.CAI has a heading with the format described in

table 3«

All entries in the header are in entry per word format.

All entries in the arrays are in entry/byte format with the

exception described below. FP as expected is a binary array.

TOPFAL is implemented as a bit structure. TOPFAL pointer

(in the header) points to a table with TNRG pointers. Each

pointer points to a list, with the first (byte) entry

specifying the number of topic numbers in that list, followed

by the topic numbers. FRALIN entries are in entry/word

format (since document numbers)> 255 are possible in EUREKA

data-bases)

.

All array pointers are displacements with respect to

the beginning of the buffer. They become physical pointers

at run time.

4.1.4 Program Description

The AUTHOR program serves to reformat the course

information into a suitable form (i.e., easy and fast access

by GUIDE, and much more compactness) . Two statically allocated

buffers are used, one to read in DBF.CAI and one to write out

CRS.CAI.

k6

Table 3 CRS.CAI header

NF

NT

NUMEX

TRNG

TNANS

MAXL

FT pointers to

FRALIN the arrays

TOPIC

GRADKY

SFL

NANS

FSTANS

CORTOP

TOPFA

L

FP

ACTKEY

FT entries
•

FRALIN entries

t

etc.

^7

For more description of the programs, the reader is

referred to the listing or the source code (AUTHOR. LST,

AUTHOR. CAI, respectively).

This program runs under DOS (Disk Operating System).

4.1.5 Mode of Utilization

To run the AUTHOR program, a user logs in with the user

code (77,6) and runs the program (i.e., types "R AUTHOR").

Error messages are described in 4.1.6. The proper response

by the program will be: "CRSFIL IS CREATED".

4.1.6 Error Messages

"INPUT BUF IS SMALL" 1 not enough space has been

allocated to read DBF. CAI. Therefore, "CRSBLS" of CAIMAC

macro in SYSMAC.SML should be increased accordingly. Size

of the input buffer (in blocks) is calculated by multiplying

the (CRSBLS" by four. There are 256 words per block. For

example, if DBF. CAI is 40 blocks, then "CRLBLS" should be

set to a value over JJ). CRS.CAI must also be re-allocated

with the new CRSBLS size.

"OUTPUT BUF IS SMALL": not enough space allocated for

CRS.CAI buffer. "CRSBLS" is set to a value less than the

size of CRS.CAI. It should be set to the same value or to

a slightly larger value. "CRSBLS", as always should be

changed in CAIMAC macro of SYSMAC.SML.

48

4.1.7 Notes

1. All the CAI files are under user number (77,6).

2. To verify correctness of CRS.CAI, a memory dump of

this file should be obtained using the routine called EDUMP.

3. Every time "CRSBLS" or any other value in CAIMAC is

changed all three CAI programs (i.e., AUTHOR, STUDNT and

GUIDE) must be re-assembled, re-linked, etc.

4.2 STUDNT

4.2.1 Purpose

The purpose of this program is to create student activity

files.

4.2.2 Input

CRS.CAI described in section 4.1 is the only input file

to this program. There is also input provided by the user

in interactive mode. This is discussed in section 4.2.5*

4.2.3 Output

The output of this program is a set of student files,

named in the following format: NAME.ACT where NAME is the

student's name which must be unique and have no more than

six characters. As implied above, more than one student file

may be created at any session.

49

The contents of the activity file is shown in table 4.

The description of the variable and arrays follows.

FILSIZ: the size of the activity file in bytes.

NAME1 & NAME2: six characters are packed in the RAD50
format into the two words. This is the student's
name.

IOBUF:

LKBKPR

:

LKBKWD:

FTSCPR

:

IS:

STEP:

INISTP:

points to a temporary I/O buffer used during
execution of GUIDE.

Link block pointer. This points to the second
word (higher address) of LKBKWDs. Link block
addresses are kept in student's activity file
to allow re-entrancy.

Link block words. These two words are filled
in immediately after the activity file is
opened. The second word (higher address) is
the address or pointer that DOS (Disk Operating
System) provides upon opening the file. The
first word is designated normally as a pointer
to an error-handling routine, which the code
does not use. Its presence, however is essential
when using the Interpreter (INT^5)» for debugging.
I suggest that we never remove such debug
facilities from the code, even though we might
think the code is super bugless!

!

full-text searcher pointer,
the AXBUFF.

This points to

this is the internal sequence number of the
current frame (i.e., the frame being presented).
For example, when IS=5, the fifth frame is
presented.

Every presentation (of a frame) increments the
STEP. Note that, for example, any time the
fifth frame is presented, IS=5, but STEP has a
different value at each presentation.

initial step. At the beginning of every session
INISTP is set to the current value of STEP.
Wherever the difference between these two
values, STEP and INISTP, is equal to the value
of SAVEFR, the activity file is stored for
precautionary purposes and INISTP is set equal
to STEP. SAVEFR is the frequency of saving
(storing) the activity file. SAVEFR is currently
set to ten.

50

Table *K Student activity file header

FILSIZ

NAME1

NAME 2

IOBUF

LKBKPR

LKBKWDs

FTSCPR

IS

STEP

INISTP

STULEV

TMPLEV

ANSWER

STA

LOGPTR

STKBEG

STKPTR

ACTKEY

REVLST

PATH

PATH entries PATSIZ

STACK area STKSIZ

Continuation

NF ACTKEY entries

(NF/8) REVLST entries

AXBUFF

Document #

Par. #

contd.

51

STULEVj student's level. Zero, one, etc.

TMPLEV: student's temporary level, used when student
requests clarification.

ANSWER: student's last response is stored here.

STAt the state of his progress. His state of progress
is normally "U" state.

LOGPTRj pointer to the logon block created by USRNTF
module of EUREKA. This is used to perform I/O
using the EXECUTIVE.

STKBEG: points to the beginning of stack. The size of
this stack is determined by value of STKSIZ (in
CAIMAC). It is presently forty bytes, which
allows ten levels of storage (four bytes per
level). STKSIZ must be a multiple of four.

STKPTR: points to the top of stack. The stack is used
to remember the student's history of progress.
The stack is primarily used when the student
diverges from the main sequence of the frames
(via a "C", "B" or a review). The information
stored on stack are the current values of:
STA, TMPLEV, IS and STEP.

ACTKEY: as defined in section 4.1.2.

REVLST : review list. It maintains the list of frames
to be reviewed. This is a binary array, with
one entry corresponding to a frame to be
represented.

PATH: this array maintains the path of student's
progress. The entries are the value of IS at
different STEPs. The size of this array is
determined by PATSIZ (in CAIMAC), currently set
to twenty, which means the last twenty steps of
the student's activity can be recalled.

AXBUFF: a buffer required for invoking the FTSRCH
module of EUREKA, which given the document and
paragraph number (as determined by FRALIN entries)
displays the frame. Explanation of the entries
in this buffer is left to EUREKA documentations!
(You have the author's best wishes!!)

52

4.2.4 Program Description

The STUDNT program by using some information provided by

the CRS.CAI file and the author (or any one running the

program) creates student files. Activity files are dynamically

allocated and are contiguous. Their size is a function of NF.

For more details refer to the file descriptions (sections 4.2.2

and 4.2.3) and the source listing (STUDNT .LST)

.

This program is run under DOS (Disk Operating System)

4.2.5 Mode of Utilization

Figure 1 should demonstrate how to create student files.

4.2.6 Error Messages

If input or output buffers are too small , the user is

informed accordingly. CRSBLS or ACTBLS should be increased

accordingly. They are found in CAIMAC macro of SYSMAC.SML.

4.2.7 Notes

1. As always, if any of the parameters such as ACTBLS,

STKSIZ, PATSIZ, etc., need to be changed, the change must

take place in the CAIMAC macro found in SYSMAC.SML. Then, all

the CAI modules (i.e., AUTHOR, STUDNT, and GUIDE) must be

reassembled and re-linked, etc. All CAI modules may be found

under (77i6) user number.

53

Figure 1

Note i All user entries follow the colon and are followed by

RETURN key.

.RU STUDNT

PLEASE TYPE IN STUDENT'S NAME (MAX OF 6 CHARS) : LUIS

PLEASE TYPE IN STUDENT'S LEVEL :

ACTIVITY FILE IS NOW CREATED.

PLEASE TYPE IN STUDENT'S NAME (MAX OF 6 CHARS) : LONGNAME

PLEASE TYPE IN STUDENT'S NAME (MAX OF 6 CHARS) t LUIS

A FILE WITH THIS NAME ALREADY EXISTS!!!

PLEASE TYPE IN STUDENT'S NAME (MAX OF 6 CHARS) » OSIN

PLEASE TYPE IN STUDENT'S LEVEL » 3

LEVEL, GREATER THAN MAXLEVEL !

!

PLEASE TYPE IN STUDENT'S LEVEL i 2
ACTIVITY FILE IS NOW CREATED.

PLEASE TYPE IN STUDENT'S NAME (MAX OF 6 CHARS) t

THANK YOU. I'LL SERVE YOU LATER

54

2. To verify correctness of the output files, a dump

of a given file through EDUMP routine must be obtained, and

compared with the file description described in section

4. 2.4. CRS.CAI correctness should, however, be verified

first.

3. Student files are so protected, to allow their updates

from other user numbers (under which GUIDE and EUREKA operate).

4.3 GUIDE

4.3.1 Purpose

The purpose of this program is to provide instruction

and interact with the students in a mixed-initiation CAI mode.

4.3.2 Input

There are two types of input files for this program.

One is the course information file (i.e., CRS.CAI), and the

other is a student activity file. At any given point the

program has access to one file of each type. The format of

these files was described in detail in sections 4.1.3 and

4.2.3.

The other input to the program is the student's response

or request. This input is often only one character or one

digit (in exercises).

4.3.3 Output

The only files being updated by this program are the

55

students' activity files. The system communicates with the

student (through a CRT or teletype) in form of easy to under-

stand messages. All the frames are displayed by FTSRCH module

of EUREKA upon GUIDE'S demand.

^•3.^ Program Description

This program as mentioned earlier, is an adopted

(simplified) version of the original GUIDE module of SMITH.

Therefore, in this section only those features different

from that of the original GUIDE, and those unique to this

implementation are pointed out.

The features that were not adopted in this implementation

of GUIDE are listed below.

1. There are no frame tags or student tags.

2. There are no extensive frames.

3. There are no response analysis facilities for exercises.

All answers are single digits corresponding to multiple

choice exercises.

k. There are no comment frames.

5. Remedial loops are treated differently. In this implemen-

tation a wrong answer to an exercise (the first attempt)

will result in review of all N (necessary) frames which

are explicitly specified to precede the exercise. Note

that if no frame satisfying both requirements is found,

then the N-frames are presented. Such N-frames are

available, since an exercise should not be testing a

topic that has not been taught.

56

If it is the second attempt, a wrong answer will

trigger presentation of all N and C-frames. Subsequent

attempts will result in presentation of the same frames.

Some new features of this implementation which the author

also recommends for other implementations are listed below.

1

.

The student is presented with descriptions of all the

student commands at the start of his first session, and

this help is also available to him upon his Help (H)

command.

2. The answer to an exercise may be obtained by typing

Answer (A). This, however, is not available to the student

unless he has already made an unsuccessful attempt!

3. When the student wishes to review some topics, he may

request to view list of ALL (A) topics, and the corres-

ponding topic numbers.

4. Upon completion of the course, the student is given a

chance to review any topic he wishes. This allows the

student to return at any later date and review topics of

interest (e.g., for an exam).

5. Size of various variables such as, length of topic texts

(TOPLEN), size of the stack (STKSIZ), size of the path

array (PATHSIZ), frequency of precautionary storage of

activity file (SAVEFR), can be very easily changed, since

all such variables are defined at only one place (i.e.,

in list of all CAI macros -- CAIMAC).

The program is written in MACRO -11 as are all other

programs in EURECAI system. GUIDE is recognized as one of

57

the many tasks running under the executive system. Therefore,

the linked code (at start address of 64000 octal), is placed

in the library of EUREKA modules (via CLIB routine). GUIDE

is invoked from the USRNTF module and it, in turn, invokes

FTSRCH module. Some I/O commands do directly request service

from DOS. This is partly because I/O in binary format is not

implemented in EXECII, and mainly to allow code re-entrancy.

The program is, quite modestly, a very well structured

and commented code. It has been designed to be modular,

understandable, and easily modified. As much as possible,

the choice of parameters and labels have been made similar

to those, appearing in the original code of GUIDE (written in

PL/l), for easier reference.

4.3.5 Mode of Utilization

This program is invoked by the student, after he has

logged on to EUREKA, by typing "GUIDE".

4.3.6 Error Messages

There are no error messages concerning the code, system

or files generated by GUIDE, that require any action by

system programmers or author. If a student has no activity

file (under the name he typed in), he is so informed.

All the messages generated by GUIDE are to guide the

student concerning his mode of interaction.

58

4.^ EUREKA Modifications

Some EUREKA modules had to be modified to allow linkage

of GUIDE with EUREKA.

The USRNTF module was modified to check for the "GUIDE"

command and the presence of the correct data-base in the

system. Upon receiving the command GUIDE, USRNTF invokes the

task GUIDE. GUIDE does not return to the father task until

the student suspends his lesson.

The FTSRCH module of EUREKA was also modified: l) to

print the paragraph and document number of the text being

displayed in the BROWSE mode and 2) to display the paragraphs

requested by GUIDE and return the control back to GUIDE.

59

5. A GUIDE FOR EURECAI USERS

In this chapter, some information that may be useful to

authors of CAI courses and their students are presented.

5.1 On Creating a Course (for authors)

This section is provided to help non-computing authors

interested in using EURECAI to create some CAI course. There-

fore, let us formulate a suggested sequence of actions that

he should take.

1. Read chapter three of this thesis (reference to

(0SIN?6) is highly recommended).

2. Read through section 4.3»4 to learn about the

differences between the original system (described in section

3.1) and the current implementation.

3. Find out through Dr. D.J. Kuck (under whose supervision

the system is maintained) if the materials of interest (the

course contents) are available in EUREKA data-bases. If not,

you should request to have the text from publications of your

choice (i.e., the library of frames) entered into a data-base.

Note that all the text of interest must be collected into one

data-base.

4. Learn how to use EUREKA so you may search the topics

of interest and display various documents in the data-base.

This task is facilitated for you by offering you a CAI course

that teaches you about EUREKA.

60

5. You are now ready to select and sequence the frames

of interest from the text in EUREKA data-base. Every frame

is identified by document number and paragraph numbers (these

numbers are printed on top of each paragraph being viewed

when in the BROWSE mode).

(a) Decide on the topics you would like for the course

to cover. Make a list of the topics and number them (starting

with topic number one with increments of one). Note that,

having more topics in the course (i.e., less decomposable

topics) may result in presentation of more relevant frames

in the remedial loops. It also allows the student to review

specific topics of interest, rather than navigating through

the frames covering a more general topic.

(b) Obtain a printout of the documents related to these

topics. You may have to use the BROWSE mode to label the

paragraph boundaries on the printout of each document.

(c) Choose frames of interest and assign a level to

each (recall the significance of frame levels). You should

also specify the topics related to each topic and their

qualifiers.

(d) If not already available in the text, you must

design a generous number of exercises. In this case, you

should write the text and enter each exercise as one paragraph

into the EUREKA data-base.

At the present time, this feature is not available, but

the system programmer, Perry Emrath, is in the process of

providing software to allow updating of the data-base contents.

61

Therefore, seek out his documentation or contact the EURECAI

system programmer.

(e) Decide upon the sequence of the presentation of

the frames (including exercises) and label them accordingly

(starting with one and increments of one). Use the criteria

utilized by SEQUENCE of SMITH (section 3.1.2).

6. Recall that exercises are special frames. Remember

that exercises of various difficulty, testing various topics

play an important part in effectiveness of the instructional

program. Make a list of all exercises (identified by the

frame sequence number and the exercise number). For each

incorrect answer to an exercise, provide a list of topics

that should be reviewed. Now, extract from all these lists

of topics, a redundant list of remedial groups. Each group

is identified by its number.

7. Provide all precedence relationships. Note that this

is useful in design of remedial loops for exercises. For

example, let's assume a wrong answer to an exercise means

reviewing a topic that has been described in, say, ten

necessary frames, but only two of these frames are related

to that exercise. Specifying those two frames as to precede

the exercise will guarantee the presentation of only those

two after the student's first unsuccessful attempt. This is

a very powerful tool in providing helpful and relevant

material to the student.

8. Request from EURECAI programmers to aide you with

creating the course files. There is a PL/l program, found

62

under DBFOUT.CAI (77,6) that accepts information about the

course and creates the course description file. The program

also provides an output for input verification.

The input format is as follows.

(a) The first input card contains two numbers (in free

format) — the number of topics and length of the topics

text (the longest topic). TOPLEN used in EURECAI modules

is currently set to 30 characters.

(b) List of topic names (text), in order. One topic per

card, left justified.

(c) Frame description cards. The following example demon-

strates the format:

free format <— i) restricted format
v

CARD: 10 3^2 lOI^N

number of

related topics

t
column 20

This card describes: frame #1, level-0, document 3»

paragraph 4; introduces topic JjO, and is necessary for

learning topic 9-

(d) Number of exercises in the course (one card).

(e) Exercise description cards. One card per exercise, with

the following included: exercise #, frame #, # of answers

followed by remedial group numbers corresponding to the

answers. Example:

CARD: 15 3 2 0^

63

describes exercise #1 , frame #5, with three answers,

where second answer is the correct one. The first and

third have remedial groups #2 and k, respectively.

(f) Remedial groups. One card per group. Example*

CARD: 2 3 9 10 1

describes remedial group #2, consisting of three topics:

9, 10, and 11.

(g) Frame precedence relations. Each relation is described

by a pair. Entries must be ended by a pair of zeros on

the last card. Example:

CARD: 17 3 9

frame # precedes 7, and 3 precedes 9.

9. The output of PL/l program has two forms. One is for

the use by the programmers, and the other to be used as an

input to the AUTHOR program. This output should be placed in

DBF.CAI (77,6) t then the AUTHOR program should be run, which

creates CRS.CAI (77»6), as described in section ^.1.5.

This concludes the course construction process.

10. The STUDNT program should now be run to create

student files, as described in section ^.2.5. You should

probably create a student file for yourself and test the

instructional program, to further improve the course organiza-

tion. If more improvements seem essential go back to step

five.

11. Hooray! To this author's surprise (!) you have

now successfully created the course and certainly deserve his

congratulat ions

.

6^

In the process of testing the EURECAI system, a course

was created to provide instructions in how to use EUREKA

system. The time spent on steps five through seven was

approximately five hours. The user's guide of EUREKA (MORG76)

made up most of the course material. Therefore, the above

figure includes providing the exercises and course specifica-

tions.

5.2 On Taking a. Course (for students)

This section is designed to provide some information

for those who intend to take courses implemented on EURECAI

system.

GUIDE, which is the teaching program, has been designed

to be self-explanatory through easy to understand messages;

but knowing some about the teaching strategy and the student

commands may be useful. Therefore, let us learn how to

communicate with GUIDE.

In teaching the student, GUIDE presents (displays) a

frame (a paragraph) of material. This could be some facts,

examples or a exercise related to a concept. The student's

response to a frame can be one of the following:

U (Understood) : If you understand the material presented in

the frame (or think you do) you should use this command. If

you understand the concept but would like to see more explana-

tion or examples you should still type U, since there could

be such materials presented in the following frame.

65

C (Clarify): You use this command either if you do not

understand the material (i.e., if the transition from the

previous frame to this frame was not that smooth), or if you

understood the previous frame but you expected to see more

examples or explanation related to the previous frame before

reading about the concepts introduced in the current frame.

Note that there is not always additional material available

to satisfy your request, in which case you will be informed

accordingly.

B (Back): This command presents you with the previous frame.

Successive B's take you back in the sequence you followed.

The exercises, however, are not presented when going back in

the sequence.

? (doubts about some topic, review mode): This command allows

you to review any topic you have covered up to the current

frame. Upon entering the review mode you may specify the

topics you wish to review, by providing the topic numbers.

To obtain topic numbers you may either request a list of all

topics in the course, or the topics related to the current

frame. Note that the latter is a nice way of finding out

how a frame is related to various topics covered in the course

Upon ending your entries in the review mode GUIDE will present

frames of material directly related to the topics you wished

to review.

Note also that when you answer an exercise incorrectly

the system will automatically present frames to review those

66

topics related to your mistake. If you have a lot of trouble

with an exercise, the system will provide you a lot of material!

R (Resume) i Any time you give the commands C, B or review a

set of topics, you temporarily halt your forward progress in

the main sequence of the frames in the course. In order to

allow you to return to the main sequence, this command is made

available to you. The best use of this is in exercises.

After making a mistake in answering an exercise and beginning

review of the corresponding topics, if you know what the

correct answer is or do not wish to continue with the review,

give the R command and return to the exercise.

S (Suspend) t This command closes the session, while remember-

ing the current frame, to be presented at the start of the

next session.

A (Answer) i If you have failed an exercise and did not find

the review material helpful, you may request the correct

answer to the exercise by typing A.

H (Help)» This command provides you with a brief description

of all the commands we've discussed here.

To get access to GUIDE at the terminal, you should first

ask the system programmer to load the EURECAI system. When

the system requests that you "logon", you type "LOGON" followed

by a blank and your first name (6 characters or less). Now,

you may enter GUIDE by simple typing GUIDE, and following

instructions.

67

LIST OF REFERENCES

0SIN76 Osin, Luis, "SMITH 1 How to Produce CAI Courses
Without Programming, " International Journal of
Man-Machine Studies, 8, 107-2^1, 1976.

68

6. FUTURE DEVELOPMENTS

In this section a list of suggestions to improve the

present CAI system is presented.

An obvious observation would be that we could incorporate

all the features of SMITH into our system. However, we

shall refer only to those features and modifications that

this author finds more essential and useful to our system.

6.1 The Student Program

At the present time, there are two user files for each

student, one recognized by GUIDE and created by STUDNT and

one recognized by EUREKA and created by the INTUSR program.

The STUDNT program should be modified so that it creates

a EUREKA user file automatically, when creating an activity

file. This is a rather simple modification.

Furthermore, the activity files should be extended to

include storage for student performance-related statistics.

6.2 The AUTHOR Program & Author Facilities

With a glance at the description of the process of

course construction (section 5«1)» the reader realizes that

there is a moderate amount of room for facilitating this

procedure.

The process of creating a course should involve only

one program which:

69

(a) accepts author's specification in a reasonable

format

(b) validates all the input specifications, detects

all inconsistencies, recognizes the holes in the curriculum

and reports its findings in an understandable form

(c) has the capability to sequence all the frames

based on the information provided by the author

(d) provides a clearly labeled output of the course

apecification to serve as an aid and reference to the author

(e) creates CRS.CAI file upon the complete and error-

free specification.

This is probably a master level project due to complexities

involved in the sequencing process (refer to 0SIN74, section

2.5). The PASCAL compiler available on the PDP-11 system

should be very helpful in the required programming.

A partial implementation of this program (one that does

not satisfy all of the above requirements) may still prove

helpful.

6.3 The Instructional Program . GUIDE

One of the shortcomings of GUIDE, is the absence of

student response analysis. All questions in exercises are

multiple choice. Therefore, facilities should be provided

to allow fill in the blanks or more complicated questions.

This may dictate maintaining a directory of equivalent words

and / or detecting spelling errors.

70

Addition of comments frames may result in more effective

handling of the student's weaknesses in the exercises.

GUIDE should also be modified to collect various perfor-

mance-related statistics on the students such as: amount of

time spent on frames, number of attempts on exercises, pattern

of clarification requests, etc. As pointed out earlier this

also implies extending the activity file.

In this author's opinion, the remedial loops of exercises

should not only consist of related necessary frames but also

should include unpresented exercises (of higher level, thus

providing more "drill and practice" in the areas most needed

by the student. For the same reason, exercises should be

included in the remedial loops generated by Clarify command,

even when they are the only frames available between the last

understood frame and the correct one. This will allow the

student, access to more exercises as he feels necessary (a

desirable characteristic of generative and "drill and practice"

CAI systems)

.

An alternative approach would be to present a comment

frame associated with the correct answer of an exercise, where

the comment frame has a sequence of extension frames, each

providing an example or a solved exercise. The student may

follow as many extension frames as he finds necessary.

6.k The EURECAI System

Facilities must be provided to allow a non-programmer

author to attach frames of text such as exercises to EUREKA

71

data-bases.

A communication scheme is available to allow sharing

common data in a contex-switching environment. This scheme

should be used to allow presence of only one copy of CRS.CAI

in the memory.

72

LIST OF REFERENCES

OSIN74 Osin, Luis, "A System to Produce CAI Courses from
Logically Structured Educational Material,"
Technical Report No. 29 (November 1973). Doctoral
Dissertation, Department of Computer Science,
Israel Institute of Technology (Technion), Haifa,
June 197^.

BIBLIOGRAPHIC DATA
SHEET

1. Report No.

UIUCDCS-R-77-902
3. Recipient's Accession No.

and Subtitle

IMPLEMENTATION OF AN

INFORMATION-RETRIEVAL BASED CAI SYSTEM

5. Report Date

August 1977

Author(s)

Morteza Bahar
8- Performing Organization Rept.

UIUCDCS-R-77-902
No.

Performing Organization Name and Address

University of Illinois at Urbana-Champaign
Department of Computer Science
Urbana, Illinois 61801

10. Project/Task/Work Unit No.

11. Contract/Grant No.

US NSF MCS73-07980

2. Sponsoring Organization Name and Address

National Science Foundation
Washington, D. C.

13. Type of Report & Period
Covered

Master's Thesis
14.

5. Supplementary Notes

6. Abstracts

As a simplified version of GUIDE, the instructional program of SMITH CAI system
was adopted and implemented in connection with EUREKA -- an experimental information
retrieval system.

The thesis also includes a discussion on the design of CAI systems, a brief
description of SMITH and guidelines for the authors and students of the EURECAI
system.

.'. Key Words and Document Analysis. 17a. Descriptors

Computer-Aided Instruction
Course Creation

. EUREKA

Information Retrieval
SMITH

Text Processing

ib. Identifiers/Open-Ended Terms

e. COSATI Field/Group

Availability Statement 19. Security Class (This 21. No. of Pages

Release Unlimited

Report)
UNCLASSIFIED 78

26. Security Class (This 22. Price

i

Page
UNCLASSIFIED

^M NTIS-35 (10-70) USCOMM-Dd 40329-P7 1

ban 2 §w

AUG 15

